
ENGINEERING METHODS OF ANALYSIS OF DEVICES WITH A 

VIBRATIONALLY FLUIDIZED BED 
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A linear rheological model is worked out for the forced oscillations of a granu- 
lated bed in a vibration facility, including the working chamber, the associated 
gas chambers, and the gas distributing grating. Results of the analysis are com- 
pared with experimental data. 

For the design of production facilities with a granulated bed which work by creating 
forced oscillations in the charge and for their metrological assurance, knowledge of the 
dynamic and frequency characteristics of the vibrating charge is necessary. However, purely 
qualitative concepts about the influence on the said characteristics of the structural elements 
[i] is insufficient in order to rationally manage hydrodynamical or heat transfer processes 
in the fluidized bed. 

Developing basic assumptions of the theory of linear viscoelasticity [2, 3] as applied 
to a heterogeneous medium, we will describe the action of the combined elements in a device 
with a vibrational!y fluidized bed, including the working chamber, acoustically closed upper 
layer, the below-grating volumes of arbitrary size, and the gas-distribution grating (Fig. la), 
with the help of the elementary rheological model presented in the same figure. Rheological 
models of this type are used in the mechanics of heterogeneous media for the analysis of re- 
laxation phenomena (soil consolidation [4]) and of reciprocating processes connected with the 
development of autooscillations in pseudofluidized [5] beds and of forced oscillations~ in 
vibrationally fluidized beds [6, 7]. The availability of a theory [3] and of an experiment 
modelling simple systems [8] in combination with the choice of the coefficients according to 
the results of solutions of the boundary value problems allows one to analytically determine 
the corresponding dynamical coefficients, except for the impedance coefficient of the grating, 

| 
which is determined empirically from the linear relation APp = ~pX. The impedance of the model 

~z Po Po Po 
elements is found from the simple ratios: Ec . . . .  E~- ; E~= the effec, 

4 8He '  H~ H~ ; 
tive viscosity of the layer is ]Jc = EcTv. The impedance of the bed E c is determined for a 
quarter-wave distribution of gas pressure pulsation as a function of the height of the bed. 
Such a distribution is inherent to a layer with nonsymmetric boundary conditions. With sym- 
metry of the dynamic response at the boundaries and approximation of the pressure distribution 
to a half-wave pattern, the calculational circuit has a different appearance (Fig. Id, g). 

Taking what has been said into account, the forced oscillations of the fluidized bed, 
with a pressure distribution in the charge tending toward a quarter-wave (Fig. la), will be 
described with an equation whose coefficients include four linear independent relaxation times, 
one of which T v is determined to be connected with interphase friction [9], but the 
remainder are found to be connected with the resistance of the grating to discharge of the 
gas surplus from the corresponding elements of the device into the surrounding medium: 

�9 ~ X  + (~ + ~) ~ + 1 + ~oT.~ -~- /  

According to the data in [I0], when the volume of the below-grating chamber is co,mmen- 
surate with the volume of the bed, and when the exhaust speeds are moderate W = i, the im- 
pedance of a gas distribution grating with an area of active cross section S D > 5-15% may 
be thought to be "null," in as much as the hydrodynamic picture practically ~oes not change. 
It is obvious that for the majority of the devices falling into that class one may neglect the 
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Fig. i. Schematics of devices with vibratory fluidized beds and 
the rheodynamic models corresponding to them. 

grill impedance, in connection with which the rheological model is transformed (Fig. Ib) and 
the oscillations of the bed are described with an equation of the second order: 

2 +  1+~. 

Under t he  c o n d i t i o n s  t h a t  t he  p e r t u r b i n g  inpu t  i s  d e s c r i b e d  by an harmonic law X B = A c o s ~ t ,  
s t e a d y - s t a t e  o s c i i l a t i o n s  o f  the  bed w i l l  c o r r e s p o n d  t o  t he  s o l u t i o n  o f  e q u a t i o n  (2 ) :  

where 

tl~ (3) 

e~ 

I + v. (4) ~Pl = arctg 1 ] 

7~ I + ?H 

Having estimated the deformation of the layer, we find the gas pressure drop at the bottom 
(grating) of the device. In the model concept it will be equivalent to the dynamic tension at 
the point between corresponding elements of the structural circuit (Fig. 15) originating during 
motion of the mass of the bed, and in differential form it is written as 
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Fig. 2. Dependence of the relative range of the gas pressure pulsation 
in a vibrationally fluidized bed P/Pmax upon the assumed frequency of 
vibration S/~res (a, c) and upon the relative volume of the additional 
gas chambers y (b, d). In Fig. 2a, 7H = ~; ~K = 8; A~ = 0.37 to 0.78 
m/see [10, ii]. The curve is calculated according to (7). In Fig. 2b, 
XH = ~. The data marked 1 are for ~ = i, while for 2 and ~ = ~res" 
In I and 3 H c = 0.07 m and in 2 it is 0.05 [I0, 12]. The curves are 
calculated according to (7). In 2c, YK = 0, and in curve 1 7H = 11.5, 
in 2 it is 8.5, and in 3 it is 2.3, and in 4 it is 1.2 [i0]. Curve 1 
is calculated according to (7), curve 4 is calculated according to (16)o 
In 2d, points i have H e = 0.12 M [L0], the curve is calculated according 
to (7). Points 2 have H c = 0.24 m [ii], the curve is calculated accord- 

ing (16). YK + 0, ~ = ~res" 

P ~- oeHe 1 q - y .  1 "-F Y,~ % 

After substitution of the quantity X according to (3) and its derivative into (5) and 
several reductions we obtain 

P=P~Decos(~t+~2), (6) 
where PB = Peaa A~ is a quantity numerically equal to the pressure which would be developed in 
the bed if the entire kinetic energy of the charge, moving with a speed A~, were converted 
into the potential energy of the compressed gas; Up is the coefficient of the resonance ampli- 
fication or dimensionless pressure: 

= ~ ~ v .  , ( 7 )  

~ 2 ~+? .  ~ -{ 1+? .  ) + (  o. ] \ i + ? . /  
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Fig. 3. Dependence of the dimensionless resonant frequency 
of vibration ~res corresponding to the maximum range of the 
gas pressure pulsation upon the relative volume of additional 
gas cavities y. In curves 1 to 3 ~H = ~. In 1H c = 0.04 to 
0.12 m [i0]. In 2 it is 0.14 [11], and in 3 it is data from 
[13]. The curve is calculated according to (7). In 4 and 5 
YK = 0. In 4 H c is 0.07 to 0.27 m [I0], the curve is calcu- 
lated according to (7). In 5 it is 0.23 m [ii] and the curve 
is calculated according to (14). 

r = arctg 
0r (Q~ - -  V. �9 ( 8 )  

In the same way one may also determine the power dissipated in the bed, which by analogy 
with the corresponding quantity in electronics we designate active power dissipation: 

N~ = S Ndt, (9) 
Ti~ 

where N is the instantaneous specific power per square meter, transmitted to the layer by the 
bottom and by the cover: 

N=NF+N~, (I0) 

NF=PXB, (11) 

N~=P.X~ (12) 

(PH is the pressure, developed in the above-layer space). Substituting the values (10)-(12) 
into (9) and reducing it, we obtain the quantity of power dissipated in the bed: 

Na=NB~N, (13) 

where N B = i/2pca0A2~ 2 has the dimensions of power, the physical sense of which is determined 
analogously to PB: qN is the dimensionless power: 

nN= 2 ( l+~, , , )  ?. 1+?~, + ]-I-?. 

(14) 
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Fig. 4. Dependence of the relative power dissipation 
in the bed nN/NNmax upon the relative volume of the 
additional gas cavities or chambers y. In curves i 
to 4 7K = 0 and H c = 0.05 m. In curve 1Ae = 0.16 
m/sec, in 2 it is 0.22, in 3 it is calculated accord- 
ing to (14), in 4 it is calculated according to (17), 
and in 5 YH = =, calculated according to (14). 

The solutions of the Eqs. (7) and (14) include a range of particular conditions and are pre- 
sented in Figs. 2-4 in comparison with experimental data [10-14]. 

1. 7H + ~- We consider an open device with a below-grating chamber (Fig. ic). For moder- 
ate volumes of the below-grating chamber, values of pulsating gas pressure at the grating (Fig. 
2a, b) and their corresponding resonance frequencies (Fig. 3, curves i-3) reasonably correspond 
with the dependences calculated according to (7). A discrepancy is observed for large volumes 
of the below-grating chamber (YK > i0). Here it is incorrect to neglect the end impedance of 
the grating. On the other hand, the distribution of pressure with YK - i00 is returned to a 
half-wave (Fig. id), and the resonant frequency is successfully in agreement with experiment 
(Fig. 3). For a pseudofluidized bed located in the regime of autooscillation, an increase 
of the volume of the below-grating chamber does not change the distribution of pressure in 
the bed which, as is known, is close to linear, and experimental values of the resonance 
parameters [13] are coincident with the calculated values. 

2. YH + ~; YK = 0 (Fig. le). Equation (2) transforms into an equation of forced oscilla- 
tions of a bed vibrating on a gas--impermeable floor [8]. As can be seen from Figs. 2b and 
3, the additional volumes* (for example, it may be the pneumatic reservoir or the chamber 
transducer) do not lead to a variation of the resonance parameters of the bed or layer up 
until 7K = 0.5. Additional chamber transducers with a total volume exceeding that value lead 
to systematic errors of measurement of the pulsating gas pressure, which is difficult to 
estimate by (7). 

3. YK = 0; YH # ~ (Fig. if). The device has an impermeable bottom or a grating of large 
resistance and a restricted upper layer space. The solutions of equations (7) and (14) are 
applicable in the regions 7H ~ i0 (curve 4 in Fig. 3 and curve 1 in Fig. 2d). For small 
volumes of upper region space (YH + 0) the value of S will grow without limit, whics does not 
correspond with reality and is caused by a change of the pressure distribution to a half-wave. 
Taking the latter into account, the rheological model changes (Fig. ig). Here El = 2Ec, ~ = 
2~ c, and in connection with it the equation of deformation of the bed for the given model is 
written as 

~-__]_4(oo2T,,X_.]_4 1 +V~r (oo2X= ~B. (15) 
1 -k- 2y~ 

To it correspond the solutions 

,qp= 
(2yu-I-1) V (4 1 +%' --Qz)2 160~ 

1 Jr 21,,~ 

*Addition of gas chambers other than those in Fig. 1 does not change the basic question, 
and their influence on the dynamics of the layer may likewise be estimated by Eq. (7). 

(16) 
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and 

(2r~+ 1) 

The p l o t s  a c c o r d i n g  to  (16) of  t h e  dependences  a r e  c o i n c i d e n t  wi th  t he  e x p e r i m e n t a l  da t a  
in  t he  r e g i o n s  ~H ~ 2 ( c u r v e  2 F ig .  2d and cu rve  5 F ig .  3 ) .  

Because a c c o r d i n g  to  t he  f r a g m e n t a r y  da t a  [14] one cannot  speak about  a f u l l  adequacy 
o f  t he  dependenc i e s  p l o t t e d  a c c o r d i n g  t o  (14) and (17)  wi th  an a c t u a l  v a l u e  o f  qN, F ig .  4 
g i v e s  me re ly  a q u a l i t a t i v e  r e p r e s e n t a t i o n ,  and a long  t hose  l i n e s  one may judge  t h a t  t he  
l a r g e s t  amount o f  e n e r g y i s  t r a n s m i t t e d  by v i b r a t i o n  to  t he  charge  when t he  above-bed  space  
i s  comparab le  wi th  t he  volume o f  t he  bed (YH ~ 10) f o r  modera te  volumes o f  a d d i t i o n a l  chambers 
~K << 1, which i s  n e c e s s a r y  t o  t a k e  i n t o  accoun t  f o r  c o n s t r u c t i o n  of  d e v i c e s  o f  a s i m i l a r  t y p e .  

By means o f  t he  g iven  method one may c o n s i d e r  a l s o  o t h e r  ca ses  o f  f o r c e d  o s c i l l a t i o n s ,  
f o r  example,  when t he  volume of  t he  b e l o w - g r a t i n g  chamber i s  unboundedly  l a r g e  ( s e e  F ig .  l d ) ,  
which however w i l l  be d e s c r i b e d  by a c o n s i d e r a b l y  more c o m p l i c a t e d  two-d imens iona l  model.  The 
l a t t e r  d e c r e a s e s  t he  v a l u e  o f  t he  method and l i m i t s  i t s  a p p l i c a t i o n  to  s i n g l e - m a s s  v a r i a n t s .  

NOTATION 

A, vibration amplitude; a0, equilibrium speed of sound in the dispersive medium; E, im- 
pedance coefficient; H, height; m, mass; N, power; P, gas pressure drop at the floor of the 
device; P0, equilibrium pressure of the surrounding medium; SD, active cross section of the 
grating; T B, period of the oscillation; t, time; W, amount o3 pseudo--liquifaction; X, aver- 
age deformation of the bed; y, relative additional volume; E, porosity; q, coefficient of 
amplification of the oscillations; 8 v = ~v, relative frequency of the forced oscillations 
of the bed; ~, dynamic viscosity; p, density; ~, ~v, relaxation time and the time of velocity 
relaxation of the phases [8]; ~, vibration frequency; ~0, intrinsic oscillation frequency of 
the bed; and Q = ~/~0, dimensionless vibration frequency. The subscripts have the following 
meanings: a) active; B) vibrational; F) floor; K) chamber; H) upper surface; p) grating or 
grill; P) pressure; c) bed; res) resonance. Compound quantities are: 

/ /  ~ ao ~ H 
ao ~ --,P~ . Oo __ , ~ ~ , 

pc~ 2 He 4 H c S  

pp ( 4Hc8 \ ~P ( 4Hce +HH); T4 '~p (4Hc8 +Hn+Hg '  
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MODEL OF COAL COMBUSTION IN A FLUIDIZED BED AND ITS 

EXPERIMENTAL IDENTIFICATION 

A. I. Tamarin UDC 662.61:66.096.5 

The author has formulated a system of one-dimensional steady-state differential 
equations for the balance of oxidizer, fuel and energy in the diffusion approxi- 
mation. The model of coal combustion in a fluidized bed is identified from the 
experimental data, and the unknown parameters of the model describing the rate 
of oxidation of fuel and the intensity of gas and fuel transfer in the bed are 
determined. 

Fluidization technology opens up possibility of efficient use of a wide range of solid 
fuels under conditions of increasing ecological requirements to protect the atmosphere. An 
obstacle to its further development is lack of understanding of the laws of coal combustion 
in a fluidized bed. The existing combustion models are based mainly on two-phase description 
of the hydrodynamics of the fluidized system [i-3]. In recent years attempts have been made 
to determine how large the factors may be, which has led to the development of very cumbersome 
models [i, 2] that are complex to analyze and especially to relate with the available experi- 
mental information on the system examined. It therefore seems desirable to use simpler and 
physically based models. These contain several unknown parameters which are then determined 
by comparing the results of theory and experiment (identification of the model) [4]. A simpli- 
fied model of this kind was proposed in our work [5], where we formulated the equations of 
oxidizer balance in the continuum and discrete phases of a fluidized bed and the balance 
equation for the energy of the burning fuel particles. This incomplete model (it lacks the 
fuel balance equation) was matched or identified using the experimental values of carbon di- 
oxide content in the fuel gases. With it one can analyze a number of regime parameters of 
the system, assuming that the concentration is constant over the height of the fluidized bed. 
With a generalized combustion model, based on the full system of fuel balance equations, one 
can study the fluidized system in greater detail. 

We write the full system of balance equations: 

for the fuel 

m~-~-~y C = o, (i) C " - -  

for the oxidizer in the continuum phase 

ksY" ? N' - -  ~ B C Y  -t- PH (Yn - -  Y) = 0, ( 2 )  
N - - 1  

for the oxidizer in the discrete phase 

N--7 Y~+ PH(Yn--Y)= 0 (3) 
N--I 

and the energy equation for the hot fuel particles in the bed 

(CO)" Jr  q~m~BYC - -  ~ B  .S_ 0C = 0. ( 4 )  
k 
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